Monday, November 27, 2006

Scraping the sky

The first of Arthur C. Clarke's "laws" (like Newton, he decided to have three of them) was: "When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong."

Actually, when a distinguished scientist states that something is impossible, he is almost certainly right. There have been a few exceptions -- pronouncements on heavier-than-air flight, space travel, and so on -- but they've been pretty rare.

I was reminded of Clarke's law at a recent public lecture on nanotechnology by the distinguished scientist Professor Mark Welland, FRS. In the midst of talking about the potential applications of nanotechnology, he displayed the cover of an issue of American Scientist magazine depicting a space elevator, a geostationary satellite connected to earth by a cable which could be used to send payloads up to space. He complained that any undergraduate physics student could tell you why it was nonsense, and that this sort of irresponsible hype in the press had done great damage to nanoscience.

It was particularly amusing because the space elevator is a concept long championed by Arthur C. Clarke, who wrote about it in a 1979 novel, "The Fountains of Paradise". (Soon afterwards, Charles Sheffield published "The web between the worlds" based on the same device, and Clarke supplied an afterword absolving Sheffield of plagiarism and calling the space elevator an idea whose time had come.)

So does Clarke's law apply to our distinguished scientist? I couldn't think of any physics reason why the space elevator was impossible. It would require an enormously strong and light cable, very delicate positioning and carefully-monitored corrective movements of the geostationary satellite, and a counterweight at the other end. I have no doubt that the engineering challenges would be formidable. But those can be surmounted (greater problems have been overcome through the history of space science). I know of no laws of physics forbidding such a thing.

The stumbling block has always been finding a material strong enough and light enough. Carbon nanotubes could, theoretically, fit the bill, but in practice nothing close has been achieved in the laboratory. There are many other difficulties. The Wikipedia article is quite detailed and has a good set of further links (including this article on space.com).

Professor Welland is hardly the only skeptic, but his statement that "an undergraduate would tell you it's nonsense" is unusually strong. Is there a fundamental reason, that has eluded me (and many engineers and investors), that it won't work? I'd love to know. Or will Prof. Welland prove to be an instance of Clarke's law? Time will tell.

6 comments:

Anonymous said...

He complained that any undergraduate physics student could tell you why it was nonsense, and that this sort of irresponsible hype in the press had done great damage to nanoscience.

I'm biased - I work (part time) for Liftport. We've been at this for going on three years now. There are formidable challenges, mostly involving the tether but also the power beaming system, engineering a vehicle that can traverse the ribbon.

More worrisome are the issues and problems in the legal and political realms. Just because something IS possible does not mean that you _can_ build it, or operate the device once it's finished. All this leaves aside the not-so minor issue of obtaining 20-30 billion in funding.

Leaving aside the hypothetical undergrad, quite a few scientists and engineers do regard a space elevator as doable. Don't take my word for of course.

Rahul Siddharthan said...

Interesting.

I suspect if the technology works, the legal and political issues won't be so bad -- lots of equatorial countries will give you space (pun unintended) in exchange for a modest amount of money.

"Possible" and "doable" of course are two different things. It may not be doable in our lifetimes but it may still be possible... at least I don't see why it's impossible. The undergrad comment reminded me of Groucho Marx: "A five-year-old child could explain that. Someone get me a five-year-old."

Brian Dunbar said...

lots of equatorial countries will give you space (pun unintended) in exchange for a modest amount of money.

I'm pessimistic. Alan Beale wanted to build a space port for his BA 2 rockets in South America and ran afoul of local politics. The guys in power wanted, yes, the money, the opposition party seized on the issue as a rallying point.

The project died. Not just because of that of course but the cost of fighting it out and the negative publicity could not have helped.

It's not enough to have buy-in from a country - it has to be legal to operate in the United States. It won't be based there but if it's illegal for American companies to use the system, if you don't have access to that market it's going to die.

Hacker said...

I contacted Dr. Welland to get some clarity as to what he said. You can find his response on my Space Elevator Blog.

Rahul Siddharthan said...

Perhaps that was what Prof Welland intended to say. But he did not say that, and he did say the things I quoted. If he had merely said "this is far beyond the capabilities of today's technology" it wouldn't have been controversial.

Anonymous said...

Here’s a Broadband Video that will show you how to check availability by postcode, how perform a broadband speed test and where to find broadband forums to answer your questions. There are also offers for SKY Broadband.